The Sixth Carbon Budget and Welsh emissions targets – Call for Evidence

Background to the UK’s sixth carbon budget

The UK Government and Parliament have adopted the Committee on Climate Change’s (CCC) recommendation to target net-zero emissions of greenhouse gases (GHGs) in the UK by 2050 (i.e. at least a 100% reduction in emissions from 1990).

The Climate Change Act (2008, ‘the Act’) requires the Committee to provide advice to the Government about the appropriate level for each carbon budget (sequential five-year caps on GHGs) on the path to the long-term target. To date, in line with advice from the Committee, five carbon budgets have been legislated covering the period out to 2032.

The Committee must provide advice on the level of the sixth carbon budget (covering the period from 2033-37) before the end of 2020. The Committee intends to publish its advice early, in September 2020. This advice will set the path to net-zero GHG emissions for the UK, as the first time a carbon budget is set in law following that commitment.

Both the 2050 target and the carbon budgets guide the setting of policies to cut emissions across the economy (for example, as set out most recently in the 2017 Clean Growth Strategy).

The Act also specifies other factors the Committee must consider in our advice on carbon budgets – the advice should be based on the path to the UK’s long-term target objective, consistent with international commitments and take into account considerations such as social circumstances (including fuel poverty), competitiveness, energy security and the Government’s fiscal position.

The CCC will advise based on these considerations and a thorough assessment of the relevant evidence. This Call for Evidence will contribute to that advice.

Background to the Welsh third carbon budget and interim targets

Under the Environment (Wales) Act 2016, there is a duty on Welsh Ministers to set a maximum total amount for net Welsh greenhouse gas emissions (Welsh carbon budgets). The first budgetary period is 2016-20, and the remaining budgetary periods are each succeeding period of five years, ending with 2046-50.

The Committee is due to provide advice to the Welsh Government on the level of the third Welsh carbon budget (covering 2026-30) in 2020, and to provide updated advice on the levels of the second carbon budget (2021-25) and the interim targets for 2030 and 2040. Section D of this Call for Evidence (covering questions on Scotland, Wales and Northern Ireland) includes a set of questions to inform the Committee’s advice to the Welsh Government.
Responding to the Call for Evidence

The Call for Evidence questions are divided into five themed sections:

A. Climate science and international circumstances
B. The path to the 2050 target
C. Delivering carbon budgets
D. Wales, Scotland and Northern Ireland
E. Sector-specific questions

It comprises more questions than previous Calls for Evidence run by the Committee, as it includes questions on the Welsh emissions targets (section D), as well as a set of detailed, sector-specific questions (section E).

It is not expected that respondents will answer all questions. Please answer only those questions where you have specific expertise and evidence to share.

We encourage responses that are brief and to the point, i.e. a maximum of 400 words per question plus links to supporting evidence, and may follow up for more detail where appropriate.

Please use the question and answer form at the end of the document and e-mail your response to: communications@theccc.org.uk using the subject line: ‘The Sixth Carbon Budget – Call for evidence’.

Alternatively, you can complete the question and answer form on the CCC website, available here.

If you would prefer to post your response, please send it to:

The Committee on Climate Change – Call for Evidence
151 Buckingham Palace Rd
London
SW1W 9SZ

The deadline for responses is Wednesday, 5 February 2020.

The question and answer form can be found on page 11 of this document.

Confidentiality and data protection

Responses will be published on our website after the response deadline, along with a list of names or organisations that responded to the Call for Evidence.

If you want information that you provide to be treated as confidential (and not automatically published) please say so clearly in writing when you send your response to the consultation. It would be helpful if you could explain to us why you regard the information you have provided as confidential. If we receive a request for disclosure of the information we will take full account of your explanation, but we cannot give an assurance that confidentiality can be maintained in all circumstances. An automatic confidentiality disclaimer generated by your IT system will not, of itself, be regarded by us as a confidentiality request.

All information provided in response to this consultation, including personal information, may be subject to publication or disclosure in accordance with the access to information legislation (primarily the Freedom of Information Act 2000, the Data Protection Act 1998 and the Environmental Information Regulations 2004).
Further background and Call for Evidence questions

The Call for Evidence questions are divided into five themed sections:
A. Climate science and international circumstances
B. The path to the 2050 target
C. Delivering carbon budgets
D. Wales, Scotland and Northern Ireland
E. Sector-specific questions

You do not need to answer all the questions. Please answer only those questions where you have specific expertise and evidence to share.

A. Climate science and international circumstances

The Committee intends to draw on its recent Net Zero report, based on the work of the IPCC as published in the Special Report on Global Warming of 1.5°C (IPCC-SR1.5) in October 2018, in assessing the implications of climate science for the budget advice. This will be supplemented with new literature summarised in the IPCC Special Reports on Climate Change and Land and The Ocean and Cryosphere in a Changing Climate and in other publications.

The Committee’s advice will be based on the long-term goal of the Paris Agreement (‘the Agreement’) to keep warming ‘well-below’ 2°C and to pursue efforts to keep it below 1.5°C. The UK’s net-zero long-term GHG emissions target is set based on this climate objective. In order to achieve this objective, global emissions pathways rapidly decline from 2020 to reach net-zero CO₂ emissions by around 2050 for a 1.5°C limit (~50% probability) and by around 2075 for the ‘well below 2°C’ end of the Paris Agreement ambition.¹

A five-yearly cycle of global stocktaking and new pledge submissions is planned, to increase ambition of nationally-determined contributions (NDCs) and move towards achieving the long-term goal of the Agreement. This is known as the ‘ratchet mechanism’. Parties will resubmit their first NDCs (covering the period up to 2030) by the end of 2020, with an aim of increasing mitigation ambition. They are also required to submit a ‘long-term low greenhouse gas emission development strategy’ focused on mid-century, by the same date.

Currently the UK’s official contribution to the Paris Agreement is set through the EU’s collective pledge to reduce emissions by at least 40% by 2030 relative to 1990. Outside the EU, the UK would need to submit its own NDC to the UN. This should be based on the pathway to Net Zero that the Committee will develop as part of the sixth carbon budget advice.

The CCC’s sixth carbon budget advice will be produced in the run-up to this critical period for global climate ambition, which will culminate with a conference of parties held in Glasgow in late-2020.

¹ In scenarios that reach global net-zero emissions for all GHGs (including methane and nitrous oxide emissions as well as CO₂) this occurs around 2068 for 1.5°C (~50% probability) and generally not before 2100 in scenarios ‘well-below’ 2°C (~66% probability below 2°C).
Questions:

1. The climate science considered in the CCC’s 2019 Net Zero report, based on the IPCC Special Report on Global Warming of 1.5°C, will form the basis of this advice. What additional evidence on climate science, aside from the most recent IPCC Special Reports on Land and the Oceans and Cryosphere, should the CCC consider in setting the level of the sixth carbon budget?

2. How relevant are estimates of the remaining global cumulative CO₂ budgets (consistent with the Paris Agreement long-term temperature goal) for constraining UK cumulative emissions on the pathway to reaching net-zero GHGs by 2050?

3. How should emerging updated international commitments to reduce emissions by 2030 impact on the level of the sixth carbon budget for the UK? Are there other actions the UK should be taking alongside setting the sixth carbon budget, and taking the actions necessary to meet it, to support the global effort to implement the Paris Agreement?

4. What is the international signalling value of a revised and strengthened UK NDC (for the period around 2030) as part of a package of action which includes setting the level of the sixth carbon budget?

B. The path to the 2050 target

Carbon budgets need to be set on a path that is achievable from today, on the way to the 2050 target. The Committee has previously set out a cost-effective path to the previous long-term target (for a reduction of at least 80% in GHG emissions between 1990 and 2050) that balances effort before 2030 with potential opportunities from 2030 to 2050. The path includes ways of reducing emissions that are likely to be relatively low-cost and actions that will develop options that may need to be deployed at scale by 2050.

The new net-zero target means that:

- The current cost-effective path for decarbonisation to 2035 is unlikely to be sufficiently steep, as it was set on the basis of the previous 2050 target. The path will need to be reassessed in the light of the net-zero target.

- Near-full decarbonisation will be needed across every sector to reach net-zero emissions. This leaves less flexibility on which emissions sources need to be abated and the loss of optionality could increase risks that the legislated 2050 target will not be met. Therefore, although cost-effectiveness will continue to be an important criterion in informing abatement opportunities, measures which keep future options open and increase potential to achieve targets will be of increased value.

Given long lead-times for many abatement measures (e.g. large-scale new infrastructure build out, tree planting) many critical abatement options will have to be in place or well advanced by the sixth carbon budget period, if Net Zero is to be achieved in 2050.

2 Remaining CO₂ budgets incorporate the effect of future emissions of non-CO₂ greenhouse gases and other climate pollutants such as aerosols.
Questions:

5. How big a role can consumer, individual or household behaviour play in delivering emissions reductions? How can this be credibly assessed and incentivised?

6. What are the most important uncertainties that policy needs to take into account in thinking about achieving Net Zero? How can government develop a strategy that helps to retain robustness to those uncertainties, for example low-regrets options and approaches that maintain optionality?

7. The fourth and fifth carbon budgets (covering the periods of 2023-27 and 2028-32 respectively) have been set on the basis of the previous long-term target (at least 80% reduction in GHGs by 2050, relative to 1990 levels). Should the CCC revisit the level of these budgets in light of the net-zero target?

8. What evidence do you have of the co-benefits of acting on climate change compatible with achieving Net Zero by 2050? What do these co-benefits mean for which emissions abatement options should be prioritised and why?

C. Delivering carbon budgets

The UK’s statutory 2050 target requires actions across the economy to reduce emissions. Many of these actions will be driven by (UK and devolved) Government policy and implemented by businesses and individuals. There will also be an important role for Local Authorities and cities in successful delivery, with a requirement for local targets and action to be a cost-effective part of meeting the UK-wide target.

Although the carbon budgets do not mandate specific actions, they indicate the overall direction that policy will take in future. Once set, carbon budgets can only be changed if there has been a significant change in the relevant circumstances set out in the Climate Change Act. Feedback from businesses as part of the Committee’s 2019 Call for Evidence to inform the Net Zero advice was that stability is an important and valuable characteristic of carbon budgets.

Questions:

9. Carbon targets are only credible if they are accompanied by policy action. We set out a range of delivery challenges/priorities for the 2050 net-zero target in our Net Zero advice. What else is important for the period out to 2030/2035?

10. How should the Committee take into account targets/ambitions of UK local areas, cities, etc. in its advice on the sixth carbon budget?

11. Can impacts on competitiveness, the fiscal balance, fuel poverty and security of supply be managed regardless of the level of a budget, depending on how policy is designed and funded? What are the critical elements of policy design (including funding and delivery) which can help to manage these impacts?

12. How can a just transition to Net Zero be delivered that fairly shares the costs and benefits between different income groups, industries and parts of the UK, and protects vulnerable workers and consumers?
D. Wales, Scotland and Northern Ireland

The Climate Change Act states that differences in circumstances between England, Wales, Scotland and Northern Ireland must be taken into account when setting the level of carbon budgets. We consider as part of this:

- Relevant legislation in the devolved administrations (e.g. the Environment (Wales) Act 2016, the Climate Change (Scotland) Act 2009) and any associated GHG reduction targets (e.g. Welsh carbon budgets, Scottish interim targets).

- A fair contribution from each of Wales, Scotland and Northern Ireland towards global decarbonisation efforts and towards the UK long-term target, based on their ability to reach net-zero GHG emissions (which relies on the proportion of economic activity in hard-to-decarbonise sectors, existing infrastructure that will impact decarbonisation in the long-term, the way land is used, opportunities for engineered GHG removals and potential to deliver more speculative abatement options).

Alongside the UK target to reach net-zero GHG emissions by 2050, our Net Zero advice also recommended a net-zero target for 2045 for Scotland and a 95% emissions reduction target against 1990 levels for Wales by 2050. These different targets reflect the opportunities for emissions reduction in different parts of the UK, rather than different levels of ambition.

The Committee is due to provide advice to the Welsh Government on the level of the third Welsh carbon budget (covering 2026-30) in 2020, and to provide updated advice on the levels of the second carbon budget (2021-25) and the interim targets for 2030 and 2040. As such, the questions below are mainly focused on Wales.

Questions:

13. What specific circumstances need to be considered when recommending an emissions pathway or emissions reduction targets for Scotland, Wales and/or Northern Ireland, and how could these be reflected in our advice on the UK-wide sixth carbon budget?

14. The Environment (Wales) Act 2016 includes a requirement that its targets and carbon budgets are set with regard to:

- The most recent report under section 8 on the State of Natural Resources in relation to Wales;
- The most recent Future Trends report under section 11 of the Well-Being of Future Generations (Wales) Act 2015;
- The most recent report (if any) under section 23 of that Act (Future Generations report).

a) What evidence should the Committee draw on in assessing impacts on sustainable management of natural resources, as assessed in the state of natural resources report?

b) What evidence do you have of the impact of acting on climate change on well-being? What are the opportunities to improve people’s well-being, or potential risks, associated with activities to reduce emissions in Wales?
c) What evidence regarding future trends as identified and analysed in the future trends report should the Committee draw on in assessing the impacts of the targets?

d) Question 12 asks how a just transition to Net Zero can be achieved across the UK. Do you have any evidence on how delivery mechanisms to help meet the UK and Welsh targets may affect workers and consumers in Wales, and how to ensure the costs and benefits of this transition are fairly distributed?

15. Do you have any further evidence on the appropriate level of Wales’ third carbon budget (2026-30) and interim targets for 2030 and 2040, on the path to a reduction of at least 95% by 2050?

16. Do you have any evidence on the appropriate level of Scotland’s interim emissions reduction targets in 2030 and 2040?

17. In what particular respects do devolved and UK decision making need to be coordinated? How can devolved and UK decision making be coordinated effectively to achieve the best outcomes for the UK as a whole?

E. Sector-specific questions

In developing our analysis and evidence base for past reports (including, most recently, our advice on Net Zero) the Committee has identified a number of evidence gaps in specific emitting sectors of the economy, which are set out as questions below.

Many of the questions below refer specifically to CCC scenarios and analysis developed for the Net Zero advice. Please see the Net Zero Advice Report and Technical Report for further details. Chapters and page references are provided in the relevant questions where necessary.

When answering these questions please bear in mind the factors the Committee must consider in our advice on carbon budgets – i.e. the path to the UK’s long-term target objective, international commitments and considerations such as social circumstances (including fuel poverty), competitiveness, energy security and the Government’s fiscal position.

You do not need to answer all the questions. Please answer only those questions where you have specific expertise and evidence to share.

Please limit your answers to 400 words per question and provide supporting evidence (e.g. reference to academic literature, market assessments, policy reports, etc.) along with your responses.

Questions:

18. **Surface transport:** As laid out in Chapter 5 of the Net Zero Technical Report (see page 149), the CCC’s Further Ambition scenario for transport assumed 10% of car miles could be shifted to walking, cycling and public transport by 2050 (corresponding to over 30% of trips in total):

 a) What percentage of trips nationwide could be avoided (e.g. through car sharing, working from home etc.) or shifted to walking, cycling (including e-bikes) and public transport by 2030/35 and by 2050? What proportion of total UK car mileage does this correspond to?
b) What policies, measures or investment could incentivise this transition?

19. **Surface transport**: What could the potential impact of autonomous vehicles be on transport demand?

20. **Surface transport**: The CCC recommended in our Net Zero advice that the phase out of conventional car sales should occur by 2035 at the latest. What are the barriers to phasing out sales of conventional vehicles by 2030? How could these be addressed? Are the supply chains well placed to scale up? What might be the adverse consequences of a phase-out of conventional vehicles by 2030 and how could these be mitigated?

21. **Surface transport**: In our Net Zero advice, the CCC identified three potential options to switch to zero emission HGVs – hydrogen, electrification with very fast chargers and electrification with overhead wires on motorways. What evidence and steps would be required to enable an operator to switch their fleets to one of these options? How could this transition be facilitated?

22. **Industry**: What policy mechanisms should be implemented to support decarbonisation of the sectors below? Please provide evidence to support this over alternative mechanisms.

a) Manufacturing sectors at risk of carbon leakage

b) Manufacturing sectors not at risk of carbon leakage

c) Fossil fuel production sectors

d) Off-road mobile machinery

23. **Industry**: What would you highlight as international examples of good policy/practice on decarbonisation of manufacturing and fossil fuel supply emissions? Is there evidence to suggest that these policies or practices created economic opportunities (e.g. increased market shares, job creation) for the manufacturing and fossil fuel supply sectors?

24. **Industry**: How can the UK achieve a just transition in the fossil fuel supply sectors?

25. **Industry**: In our Net Zero advice, the CCC identified a range of resource efficiency measures that can reduce emissions (see Chapter 4 of the Net Zero Technical Report, page 115), but found little evidence relating to the costs/savings of these measures. What evidence is there on the costs/savings of these and other resource efficiency measures (ideally on a £/tCO₂e basis)?

26. **Buildings**: For the majority of the housing stock in the CCC’s Net Zero Further Ambition scenario, 2050 is assumed to be a realistic timeframe for full roll-out of energy efficiency and low-carbon heating:

 a) What evidence can you point to about the potential for decarbonising heat in buildings more quickly?

3 Carbon leakage occurs if costs of climate policies result in offshoring of production to other countries.

4 For further discussion please see Element Energy and UCL for the CCC (2019) *Analysis on abating direct emissions from ‘hard-to-decarbonise’ homes, with a view to informing the UK’s long term targets*, p88.
b) What evidence do you have about the role behaviour change could play in driving forward more extensive decarbonisation of the building stock more quickly? What are the costs/levels of abatement that might be associated with a behaviour-led transition?

27. **Buildings**: Do we currently have the right skills in place to enable widespread retrofit and build of low-carbon buildings? If not, where are skills lacking and what are the gaps in the current training framework? To what extent are existing skill sets readily transferable to low-carbon skills requirements?

28. **Buildings**: How can local/regional and national decision making be coordinated effectively to achieve the best outcomes for the UK as a whole? Can you point to any case studies which illustrate successful local or regional governance models for decision making in heat decarbonisation?

29. **Power**: Think of a possible future power system without Government backed Contracts-for-Difference. What business models and/or policy instruments could be used to continue to decarbonise UK power emissions to close to zero by 2050, whilst minimising costs?

30. **Power**: In Chapter 2 of the Net Zero Technical Report we presented an illustrative power scenario for 2050 (see pages 40-41 in particular):

 a) Which low-carbon technologies could play a greater/lesser role in the 2050 generation mix? What about in a generation mix in 2030/35?

 b) Power from weather-dependent renewables is highly variable on both daily and seasonal scales. Modelling by Imperial College which informed the illustrative 2050 scenario suggested an important role for interconnection, battery storage and flexible demand in a future low-carbon power system:

 i. What other technologies could play a role here?

 ii. What evidence do you have for how much demand side flexibility might be realised?

31. **Hydrogen**: The Committee has recommended the Government support the delivery of at least one large-scale low-carbon hydrogen production facility in the 2020s. Beyond this initial facility, what mechanisms can be used to efficiently incentivise the production and use of low-carbon hydrogen? What are the most likely early applications for hydrogen?

32. **Aviation and Shipping**: In September 2019 the Committee published advice to Government on international aviation and shipping and Net Zero. The Committee recognises that the primary policy approach for reducing emissions in these sectors should be set at the international level (e.g. through the International Civil Aviation Organisation and International Maritime Organisation). However, there is still a role for supplementary domestic policies to complement the international approach, provided these do not lead to concerns about competitiveness or carbon leakage. What are the domestic measures the UK could take to reduce aviation and shipping emissions over the period to 2030/35 and longer-term to 2050, which would not create significant competitiveness or carbon leakage risks? How much could these reduce emissions?
33. **Agriculture and Land use**: In Chapter 7 of the Net Zero Technical Report we presented our Further Ambition scenario for agriculture and land use (see page 199). The scenario requires measures to release land currently used for food production for other uses, whilst maintaining current per-capita food production. This is achieved through:

- A 20% reduction in consumption of red meat and dairy
- A 20% reduction in food waste by 2025
- Moving 10% of horticulture indoors
- An increase in agriculture productivity:
 - Crop yields rising from the current average of 8 tonnes/hectare for wheat (and equivalent rates for other crops) to 10 tonnes/hectare
 - Livestock stocking density increasing from just over 1 livestock unit (LU)/hectare to 1.5 LU/hectare

Can this increase in productivity be delivered in a sustainable manner?

Do you agree that these are the right measures and with the broad level of ambition indicated? Are there additional measures you would suggest?

34. **Agriculture and Land use**: Land spared through the measures set out in question 33 is used in our Further Ambition scenario for: afforestation (30,000 hectares/year), bioenergy crops (23,000 hectares/year), agro-forestry and hedgerows (~10% of agricultural land) and peatland restoration (50% of upland peat, 25% lowland peat). We also assume the take-up of low-carbon farming practices for soils and livestock. Do you agree that these are the key measures and with the broad level of ambition of each? Are there additional measures you would suggest?

35. **Greenhouse gas removals**: What relevant evidence exists regarding constraints on the rate at which the deployment of engineered\(^5\) GHG removals in the UK (such as bioenergy with carbon capture and storage or direct air capture) could scale-up by 2035?

36. **Greenhouse gas removals**: Is there evidence regarding near-term expected learning curves for the cost of engineered GHG removal through technologies such as bioenergy with carbon capture and storage or direct air capture of \(\text{CO}_2\)?

37. **Infrastructure**: What will be the key factors that will determine whether decarbonisation of heat in a particular area will require investment in the electricity distribution network, the gas distribution network or a heat network?

38. **Infrastructure**: What scale of carbon capture and storage development is needed and what does that mean for development of \(\text{CO}_2\) transport and storage infrastructure over the period to 2030?

\(^5\) We consider land-based removals, such as afforestation and peatland restoration, separately in the agriculture and land-use sector.
Question and answer form

When responding, please provide answers that are as specific and evidence-based as possible, providing data and references to the extent possible.

Please limit your answers to 400 words per question and provide supporting evidence (e.g. academic literature, market assessments, policy reports, etc.) along with your responses.

A. Climate science and international circumstances

Question 1: The climate science considered in the CCC’s 2019 Net Zero report, based on the IPCC Special Report on Global Warming of 1.5°C, will form the basis of this advice. What additional evidence on climate science, aside from the most recent IPCC Special Reports on Land and the Oceans and Cryosphere, should the CCC consider in setting the level of the sixth carbon budget?

There is mounting evidence that temperature increase will result in high impact events interconnected across different biophysical systems, potentially committing the world to long-term irreversible changes. The possibility of breaching such “tipping points” in the near future is discussed by Lenton et al. (2019), including the potential for “cascading effects” and regime shifts. Spratt and Dunlop (2018) meanwhile present evidence of the value of a risk-based framework to possible catastrophic impacts, and the possibility that the IPCC may have underestimated such risks.

The seriousness of such possibilities is underlined by recent research on the Greenland Ice Sheet (Shepherd et al., 2019), which shows that Greenland’s ice losses are tracking the IPCC’s high-end climate warming scenario, leading to a forecast of an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to the central estimate.

Emerging evidence on how permafrost thaw (a non-linear and tipping process of the Earth system) reduces the available carbon budget should also be taken into account (Gasser et al., 2018; Turetsky et al., 2020). Permafrost thaw adds to the uncertainties involved in making climate policy decisions including setting carbon budgets, but efforts geared towards meeting Paris goals should not ignore this or other tipping points or irreversible feedbacks in the Earth system (see also Q2).

New evidence on overshoot, where a temperature limit is first exceeded and later returned to through large-scale CO₂ removal from the atmosphere, should also be considered. Whilst this may result in a reversal of global mean temperature once a temperature limit has been breached, there may be implications for Earth system parameters sensitive to the carbon cycle, even when temperatures have returned to pre-overshoot levels (Tokarska et al., 2019).

Key findings regarding the carbon balance of tropical forests meanwhile include the size of the long-term tropical carbon sink (>1 Pg C per year), as well as its recent decline and climatic controls (Brienen et al. 2015; Hubau et al. 2020), and the discovery of major carbon pools in tropical peatlands (Draper et al. 2014, Dargie et al. 2018) also now under threat from climate change and direct human impacts.

The climate threat to the tropical C sink shows that modelled expectations of long-term sinks in the tropics may be too optimistic, whilst the pathway to limiting anthropogenic
Question 1: The climate science considered in the CCC’s 2019 Net Zero report, based on the IPCC Special Report on Global Warming of 1.5°C, will form the basis of this advice. What additional evidence on climate science, aside from the most recent IPCC Special Reports on Land and the Oceans and Cryosphere, should the CCC consider in setting the level of the sixth carbon budget?

Global warming to 1.5°C (or 2°C) will be considerably harder without the 1 Pg C sink into tropical intact forests.

References

Question 2: How relevant are estimates of the remaining global cumulative CO₂ budgets (consistent with the Paris Agreement long-term temperature goal) for constraining UK cumulative emissions on the pathway to reaching net-zero GHGs by 2050?

Global carbon budgets will be continually refined as temperature observations and emissions fluxes are assimilated (e.g. Friedlingstein *et al.*, 2019). A new framework for estimating the global carbon budget (Rogelj *et al.*, 2019), based on the methodology used in the IPCC’s SR1.5, includes provision for Earth system feedbacks such as permafrost.
Question 2: How relevant are estimates of the remaining global cumulative CO₂ budgets (consistent with the Paris Agreement long-term temperature goal) for constraining UK cumulative emissions on the pathway to reaching net-zero GHGs by 2050?

Thaw (Q1), and allows a consistent approach to improving budget estimates over time as scientific knowledge advances (Q6).

CONSTRAIN (2019) applies the Rogelj *et al.* (2019) framework to estimate a global remaining carbon budget from the start of 2020 of 235 Gt CO₂, for a likely (66%) probability of staying below 1.5°C. This is broadly consistent with the IPCC SR1.5 budget (420Gt) when accounting for emissions since 2018 alongside 100 Gt CO₂ for Earth system feedbacks such as permafrost, which SR1.5 reports separately. Given the global remaining carbon budget is currently reducing by around 43 Gt CO₂ per year, and may reduce further as we gain better understanding of key processes and feedbacks (Q6), this highlights just how small the remaining global budget is.

Translating global carbon budgets to the national level however depends on decisions around fairness and equity as well as methodological choices, national inventories and the inclusion of international offsetting and emissions trading. There is no globally agreed methodology for translating from the global to national level, but questions around equity and justice continue to feature strongly (Alcaraz *et al.*, 2018; Rogelj and Schleussner, 2019; Schleussner *et al.*, 2019, van den Berg *et al.*, 2019) and should be considered in UK policy. In addition, debate is needed around whether emissions from outside, but generated to satisfy demand within, the UK should be considered in addition to territorial emissions (i.e. through consumption based accounting, e.g. Barrett *et al.*, 2013).

However, regardless of value judgements and political decisions, the key point is that there is less than 0.5°C additional warming before 1.5°C is reached. Combined with uncertainties around near-term warming rates, and the benefits of strong mitigation choices, the focus should remain on creating a roadmap to Net Zero by mid-century at latest.

The global carbon budget will help keep the Paris goals in mind on this pathway: every tonne of CO₂ emitted by the UK will eat into the remaining global budget and our chances of limiting temperature increase; and the more we emit near-term, the faster emissions will have to decline thereafter.

References

Question 2:
How relevant are estimates of the remaining global cumulative CO₂ budgets (consistent with the Paris Agreement long-term temperature goal) for constraining UK cumulative emissions on the pathway to reaching net-zero GHGs by 2050?

Question 3:
How should emerging updated international commitments to reduce emissions by 2030 impact on the level of the sixth carbon budget for the UK? Are there other actions the UK should be taking alongside setting the sixth carbon budget, and taking the actions necessary to meet it, to support the global effort to implement the Paris Agreement?

UK Government investment in overseas oil and gas should be halted, since planned expansion is incompatible with the Paris Agreement (Global Witness, 2019); whilst planned airport growth should be halted or reduced as it is incompatible with Net Zero targets (Finney and Mattioli, 2019). The only proven way for the aviation industry to cut emissions is by managing demand.

The UK should also support new ‘global Britain’ partners in the tropics to effectively monitor their forests. It was global collaborative networks that discovered the tropical carbon sink, quantified its sensitivity to carbon dioxide, heat, and drought, and now predict where and when it will decline (Q1). These include RAINFOR (Red Amazónica de Inventarios Forestales [http://www.rainfor.org/en]) across tropical South America; AfriTRON ([http://www.afritron.org/]) in tropical Africa; and MonANPe in Peru, with more than 150 institutional partners in total.

The sink provides major opportunities for tropical countries to protect their forests, and also contribute to their NDCs - in many Amazon countries, the intact forest sink still exceeds their carbon emissions (Phillips and Brienen 2017). No matter what pathway to Net Zero it is taken within the UK, we need to track the behaviour of tropical forests through continued high-quality on-the-ground monitoring of their climate response, an area which the UK has led for the past 20 years.

References

Question 3: How should emerging updated international commitments to reduce emissions by 2030 impact on the level of the sixth carbon budget for the UK? Are there other actions the UK should be taking alongside setting the sixth carbon budget, and taking the actions necessary to meet it, to support the global effort to implement the Paris Agreement?

Question 4: What is the international signalling value of a revised and strengthened UK NDC (for the period around 2030) as part of a package of action which includes setting the level of the sixth carbon budget?

A strengthened NDC will obviously signal ambition and serious commitment. However, with recent reports indicating that the UK is not on track to reach Net Zero, (https://www.netzeropolicytracker.co.uk/), Government must not only rapidly bring forward new policies but also facilitate action, or risk undermining diplomatic influence and credibility in the run up to COP26.

One of the major causes of uncertainty in NDCs is meanwhile the practice of expressing emissions levels as a single number for all greenhouse gases combined (tonnes of carbon dioxide equivalent). Although the uncertainty in temperature increase of using this approach, due to for example including the contribution of short-lived gases, has been calculated as less than 0.17°C using the GWP100 metric (Denison et al., 2019), this is still a significant fraction of the 0.5°C difference between the warming limits specified in the Paris Agreement, and is likely to be material in the future.

As gaining international agreement on using a different metric will require time and effort when action and ambition are priority, we recommend that supplementary information is included within the UK NDC on emissions levels of the most significant greenhouse gases, particularly CO₂ and methane, and that other countries are encouraged to do the same. This would help to reduce uncertainties without impairing the setting of NDCs or mitigating action at this crucial time.

References

B. The path to the 2050 target

Question 5: How big a role can consumer, individual or household behaviour play in delivering emissions reductions? How can this be credibly assessed and incentivised?

ANSWER:
Question 6: What are the most important uncertainties that policy needs to take into account in thinking about achieving Net Zero? How can government develop a strategy that helps to retain robustness to those uncertainties, for example low-regrets options and approaches that maintain optionality?

Setting a carbon budget assumes a roughly linear relationship between CO$_2$ emissions and temperature increase. This relationship is however still subject to considerable uncertainties from, for example, cloud feedbacks and the nature of Effective Radiative Forcing (ERF) (CONSTRAIN, 2019).

Narrowing these uncertainties, through insights into driving mechanisms behind various climate forcers, is key to improved carbon budget estimates. Summaries of the latest knowledge on ERF, based on peer-reviewed publications submitted to IPCC AR6, and their policy implications will be available on the CONSTRAIN website (www.constrain-eu.org) in March 2020.

Meanwhile, no obvious mitigation options have been identified that can completely eliminate several important sources of non-CO$_2$ emissions whilst the climate may not respond in the same way to CO$_2$ as it does to methane or aerosol changes (Richardson et al., 2019). Uncertainties in reducing non-CO$_2$ emissions are estimated as ±250Gt for the 1.5°C limit (CONSTRAIN, 2019) highlighting the scale of uncertainties still present in the carbon budget, and further emphasising the need to cut emissions.

Variations in near-term warming rates due to anthropogenic (rather than natural) factors will also affect the carbon budget. Some recent models show warming of greater than 0.5°C per decade over the near-term, which would suggest smaller remaining carbon budgets or a need to reach Net Zero emissions sooner. Forster et al. (2020) show that many of these high warming rates are low probability, but are still a possibility – again emphasising the need for urgent mitigation and minimising risks through adaptation choices. Very high near-term warming rates are however unlikely if we follow a sustainable growth (below 1.5°C) pathway, and there is potential to cut the maximum historical warming rate by half if we are ambitious (CONSTRAIN 2019).

As new evidence comes to light it will be incorporated into estimates of the remaining global carbon budget, to be set out in future CONSTRAIN reports, but such factors should also be discussed widely across the policy arena to improve awareness of key uncertainties affecting the concepts of carbon budgets and Net Zero.

It should also be recognised that uncertainties cannot always be reduced and decisions may need to be made in the face of deep uncertainties. Tools to support this kind of decision making have been applied effectively both in the UK (e.g. Dessai and Hulme, 2007; Ranger et al., 2013; Roelich and Giesekam 2019) and in Europe (e.g. Haasnoot et al., 2013).

References

Forster et al. (2020) Latest climate models confirm need for urgent mitigation, Nature Climate Change doi:10.1038/s41558-019-0660-0

Question 6: What are the most important uncertainties that policy needs to take into account in thinking about achieving Net Zero? How can government develop a strategy that helps to retain robustness to those uncertainties, for example low-regrets options and approaches that maintain optionality?

Question 7: The fourth and fifth carbon budgets (covering the periods of 2023-27 and 2028-32 respectively) have been set on the basis of the previous long-term target (at least 80% reduction in GHGs by 2050, relative to 1990 levels). Should the CCC revisit the level of these budgets in light of the net-zero target?

ANSWER:

Question 8: What evidence do you have of the co-benefits of acting on climate change compatible with achieving Net Zero by 2050? What do these co-benefits mean for which emissions abatement should be prioritised and why?

Reducing fossil fuel consumption leads to lower air pollution and better public health outcomes (Lelieveld et al., 2019) whilst not significantly increasing the rate of global temperature change in 1.5°C-consistent pathways through reducing the formation of atmosphere-cooling aerosols (Shindell and Smith, 2019).

In the UK, air pollution is responsible for 28,000-36,000 premature deaths per year (COEMAP 2018), disproportionately affecting children, young adults and poorer households in urban areas (Barnes et al., 2019), whilst the transport sector is responsible for 33% of national CO₂ emissions and is the only key sector in which emissions have not declined substantially since 1990 (BEIS 2019). Policies to incentivise a reduction in private car use, particularly in urban areas, would therefore have climate and air quality co-benefits, whilst also improving transit efficiency and health outcomes (e.g. Khreis et al., 2019).

References

Question 8: What evidence do you have of the co-benefits of acting on climate change compatible with achieving Net Zero by 2050? What do these co-benefits mean for which emissions abatement should be prioritised and why?

C. Delivering carbon budgets

Question 9: Carbon targets are only credible if they are accompanied by policy action. We set out a range of delivery challenges/priorities for the 2050 net-zero target in our Net Zero advice. What else is important for the period out to 2030/2035?

Government and scientists need to work together to improve the translation of new climate science into an improved evidence base for policy and action, not only in terms of mitigation but also adaptation and resilience as we prepare for further temperature change in the period before 2050. This will particularly help where policy makers lack expertise, time or resources to fully assess new findings in climate science.

Clear science-into-policy mechanisms should therefore exist for all areas of Government, targeted towards a better understanding not only of carbon budgets and the implications of different emissions pathways, but also global and regional climate projections.

For example, most projections concentrate on the pathway to 2100, whereas policy-relevant timeframes are much nearer-term. Rather than promoting the output of complex climate models, simplified climate emulators are being developed to explore possible emissions pathways and how these can inform policy. One such tool will be available on the CONSTRAIN website (https://constrain-eu.org) by autumn 2020, but routes into policy are needed.

With these clear routes, updated projections and knowledge can be integrated into decision making as scientific understanding develops, and used to inform adaptation and mitigation policy and action. Such an approach could also learn from the experiences of the energy sector in whole systems research and a low carbon transition (Munro and Cairney, 2019). The experiences of other sectors in science-into-policy, such as
Question 9: Carbon targets are only credible if they are accompanied by policy action. We set out a range of delivery challenges/priorities for the 2050 net-zero target in our Net Zero advice. What else is important for the period out to 2030/2035?

healthcare and medicine (e.g. Cairney and Oliver, 2017; Gentry et al., 2020) may also be useful in supporting co-production of usable scientific knowledge.

References

Cairney and Oliver (2017) Evidence-based policymaking is not like evidence-based medicine, so how far should you go to bridge the divide between evidence and policy? Health Research Policy and Systems doi:10.1186/s12961-017-0192-x

Question 10: How should the Committee take into account targets/ambitions of UK local areas, cities, etc. in its advice on the sixth carbon budget?

Low carbon measures in cities could reduce urban emissions by nearly 90% by 2030, whilst delivering significant benefits in areas such as public health as above, as well as job creation and poverty alleviation from climate-friendly urban development (Coalition for Urban Transitions, 2019).

However, whilst local governments have huge potential to drive climate action, they must be empowered to do so at the national level. The Committee should promote flexible national arrangements that can be tailored to local contexts, as well as the removal of any regulatory barriers to ambitious local action (e.g. Roelich et al. 2018, Kuzemko and Britton 2020).

References

Roelich et al. (2018) Institutional pathways to municipal energy companies in the UK: Realising co-benefits to mitigate climate change in cities, Journal of Cleaner Production

Question 1: Can impacts on competitiveness, the fiscal balance, fuel poverty and security of supply be managed regardless of the level of a budget, depending on how policy is designed and funded? What are the critical elements of policy design (including funding and delivery) which can help to manage these impacts?

The form of finance used to support a low carbon transition can have a significant effect on the just-ness of that transition, affecting the affordability of projects, the transparency of decision making and spatial equality. “Just” energy finance, for example, should fulfil a number of criteria including affordability, good governance, due process, intra-generational equity, spatial equity, and financial resilience (Hall et al., 2018).

References

Question 12: How can a just transition to Net Zero be delivered that fairly shares the costs and benefits between different income groups, industries and parts of the UK, and protects vulnerable workers and consumers?

As many as one in five workers will be affected by a transition to Net Zero, with effects unevenly distributed across the UK. Large inequality can also be found in not only international but also intranational energy footprints (Robins et al., 2019, Oswald et al., 2020). At the household level, energy use and carbon emissions are highly unequally distributed across income groups, and income remains one of the most important drivers of emissions. However, this differs across consumption domains.

Energy use in the home is more evenly distributed across income groups than travel related emissions such as from car ownership or air travel. This means that Net Zero policies that increase household energy prices tend to have much more regressive effects (burdening low income households more than other groups) compared to policies leading to price increases in road or air travel.

To ensure fairness and public acceptability, great care would need to be taken to avoid any regressive effects, especially for the home energy domain. This could be done by redistributing revenues from energy or carbon taxes through the tax and benefit system, or by providing a free, equal amount of energy to every household to ensure basic needs are met and fuel poverty avoided. This would also have strongly progressive distributional effects (Buchs and Schnepf, 2013; Buchs et al. 2014).

Alternatively, funds raised through general taxation could offer a fair and practical approach, but as with other options would also require leadership and long term commitment to avoid leaving policies vulnerable to short term budgetary or political change (Barrett et al., 2018).

While rising costs associated with private vehicle use are, on average, less regressive, poorer groups will still be adversely affected. Car ownership among poorer groups has risen, and they would still be disproportionately affected by higher motoring costs. It is therefore important to expand affordable and reliable mass transit systems to reduce car dependency while ensuring that everyone’s mobility needs are being met (Mattioli et al. 2018). This would also deliver significant co-benefits (Q8).
Question 12: How can a just transition to Net Zero be delivered that fairly shares the costs and benefits between different income groups, industries and parts of the UK, and protects vulnerable workers and consumers?

Justice should also be considered in a broader sense than simply impacts on jobs or cost distribution. The effect of the transition on citizens’ ability to achieve wellbeing should be considered, possibly using a framework such as the capabilities approach (e.g. Wood and Roelich, 2019) or Human Needs (e.g. Brand-Correa et al, 2018).

References
Robins et al. (2019) Investing in a just transition in the UK: How investors can integrate social impact and place-based financing into climate strategies. London: Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science

Oswald et al. (2020) Large inequality in international and intranational energy footprints between income groups and across consumption categories, Nature Energy, in press

http://eprints.whiterose.ac.uk/146443/

D. Scotland, Wales and Northern Ireland

Question 13: What specific circumstances need to be considered when recommending an emissions pathway or emissions reduction targets for Scotland, Wales and/or Northern Ireland, and how could these be reflected in our advice on the UK-wide sixth carbon budget?

ANSWER:
Question 14: The Environment (Wales) Act 2016 includes a requirement that its targets and carbon budgets are set with regard to:

- The most recent report under section 8 on the State of Natural Resources in relation to Wales;
- The most recent Future Trends report under section 11 of the Well-Being of Future Generations (Wales) Act 2015;
- The most recent report (if any) under section 23 of that Act (Future Generations report).

a) What evidence should the Committee draw on in assessing impacts on sustainable management of natural resources, as assessed in the state of natural resources report?

b) What evidence do you have of the impact of acting on climate change on well-being? What are the opportunities to improve people’s well-being, or potential risks, associated with activities to reduce emissions in Wales?

c) What evidence regarding future trends as identified and analysed in the future trends report should the Committee draw on in assessing the impacts of the targets?

d) Question 12 asks how a just transition to Net Zero can be achieved across the UK. Do you have any evidence on how delivery mechanisms to help meet the UK and Welsh targets may affect workers and consumers in Wales, and how to ensure the costs and benefits of this transition are fairly distributed?

ANSWER:

Question 15: Do you have any further evidence on the appropriate level of Wales’ third carbon budget (2026-30) and interim targets for 2030 and 2040, on the path to a reduction of at least 95% by 2050?

ANSWER:

Question 16: Do you have any evidence on the appropriate level of Scotland’s interim emissions reduction targets in 2030 and 2040?

ANSWER:

Question 17: In what particular respects do devolved and UK decision making need to be coordinated? How can devolved and UK decision making be coordinated effectively to achieve the best outcomes for the UK as a whole?

ANSWER:

E. Sector-specific questions
Question 18 (Surface transport): As laid out in Chapter 5 of the Net Zero Technical Report (see page 149), the CCC’s Further Ambition scenario for transport assumed 10% of car miles could be shifted to walking, cycling and public transport by 2050 (corresponding to over 30% of trips in total):

a) What percentage of trips nationwide could be avoided (e.g. through car sharing, working from home etc.) or shifted to walking, cycling (including e-bikes) and public transport by 2030/35 and by 2050? What proportion of total UK car mileage does this correspond to?

b) What policies, measures or investment could incentivise this transition?

For questions 18-20 please see the response from the Centre for Research into Energy Demand Solutions (CREDS).

Question 19 (Surface transport): What could the potential impact of autonomous vehicles be on transport demand?

ANSWER:

Question 20 (Surface transport): The CCC recommended in our Net Zero advice that the phase out of conventional car sales should occur by 2035 at the latest. What are the barriers to phasing out sales of conventional vehicles by 2030? How could these be addressed? Are the supply chains well placed to scale up? What might be the adverse consequences of a phase-out of conventional vehicles by 2030 and how could these be mitigated?

ANSWER:

Question 21 (Surface transport): In our Net Zero advice, the CCC identified three potential options to switch to zero emission HGVs – hydrogen, electrification with very fast chargers and electrification with overhead wires on motorways. What evidence and steps would be required to enable an operator to switch their fleets to one of these options? How could this transition be facilitated?

Since the increasing electrification of passenger car and vans is already imposing significant strains on the global lithium supply, further mass electrification in the heavy-duty vehicle sector, expected to increase the accumulated net demand by 29% to 53%, would come with risks.

Even if electric HDVs gain a technoeconomic advantage over other powertrain technologies and achieve market success in the short term, their long-term development is likely to face resource constraints with a reflected surge in lithium prices. It is therefore proposed that fuel cell vehicles should be prioritized for decarbonizing the HDV segment.

This supports the CCC conclusion and targeted investment is urgently needed in assessing the feasibility of a de-carbonised hydrogen infrastructure and heavy-duty vehicle technology.
Question 21 (Surface transport): In our Net Zero advice, the CCC identified three potential options to switch to zero emission HGVs – hydrogen, electrification with very fast chargers and electrification with overhead wires on motorways. What evidence and steps would be required to enable an operator to switch their fleets to one of these options? How could this transition be facilitated?

Hao, H., Geng, Y., Tate, J.E. *et al.* (2019) Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment, *Nature Communications* doi:10.1038/s41467-019-13400-1

Question 22 (Industry): What policy mechanisms should be implemented to support decarbonisation of the sectors below? Please provide evidence to support this over alternative mechanisms.

a) Manufacturing sectors at risk of carbon leakage
b) Manufacturing sectors not at risk of carbon leakage
c) Fossil fuel production sectors
d) Off-road mobile machinery

ANSWER:

Question 23 (Industry): What would you highlight as international examples of good policy/practice on decarbonisation of manufacturing and fossil fuel supply emissions? Is there evidence to suggest that these policies or practices created economic opportunities (e.g. increased market shares, job creation) for the manufacturing and fossil fuel supply sectors?

ANSWER:

Question 24 (Industry): How can the UK achieve a just transition in the fossil fuel supply sectors?

ANSWER:

Question 25 (Industry): In our Net Zero advice, the CCC identified a range of resource efficiency measures that can reduce emissions (see Chapter 4 of the Net Zero Technical Report, page 115), but found little evidence relating to the costs/savings of these measures. What evidence is there on the costs/savings of these and other resource efficiency measures (ideally on a £/tCO2e basis)?

ANSWER:
Question 26 (Buildings): For the majority of the housing stock in the CCC’s Net Zero Further Ambition scenario, 2050 is assumed to be a realistic timeframe for full roll-out of energy efficiency and low-carbon heating.

a) What evidence can you point to about the potential for decarbonising heat in buildings more quickly?

b) What evidence do you have about the role behaviour change could play in driving forward more extensive decarbonisation of the building stock more quickly? What are the costs/levels of abatement that might be associated with a behaviour-led transition?

The Sustainability Research Institute at the University of Leeds has produced two recent papers on UK housing stock, which are relevant to part a):

Both use the MARCO-UK model to look at the wider socio-macroeconomic benefits of rapid retrofitting and new build energy targets, to 2030, via a range of scenarios. 1) looks at existing BEIS targets, whilst 2) considers the UK Labour Party’s Energy Plan produced for the 2019 election.

For 1), the findings included that building retrofit was more significant in socioeconomic terms (e.g. larger GDP growth, more jobs, higher wages) than new build, but that a combination of all policies yielded more economic and energy benefits than their sum due to multiplier effects. All policies also acted as a source of employment creation, whilst accounting for the labour skills upgrade also had overall positive effects at the macroeconomic level.

Overall, both analyses show widespread socioeconomic benefits (as well as energy reduction of the scale required for Net Zero) of deep, rapid retrofit and new build energy targets, including GDP growth, gains to employment, skills and wages (both analyses assume retrofit in 12 years). The broader benefits highlighted by these studies also relate to Q8 in terms of welfare gains and health improvements via better homes.

Question 27 (Buildings): Do we currently have the right skills in place to enable widespread retrofit and build of low-carbon buildings? If not, where are skills lacking and what are the gaps in the current training framework? To what extent are existing skill sets readily transferable to low-carbon skills requirements?

ANSWER:
Question 28 (Buildings): How can local/regional and national decision making be coordinated effectively to achieve the best outcomes for the UK as a whole? Can you point to any case studies which illustrate successful local or regional governance models for decision making in heat decarbonisation?

The area based, city wide approaches to retrofit being developed via the UK Green Building Council Accelerator Cities Retrofit Programme highlight the need for an ambitious home retrofit programme if the UK is to realise its Net Zero target by 2050.

This initiative is currently developing comprehensive proposals for a city-led retrofit programme, and an action plan for how it might be taken forward, based on workshops which took place at the end of 2019. This should be considered by the CCC as soon as available (https://www.ukgbc.org/ukgbc-work/accelerator-cities-pathfinder/).

Question 29 (Power): Think of a possible future power system without Government backed Contracts-for-Difference. What business models and/or policy instruments could be used to continue to decarbonise UK power emissions to close to zero by 2050, whilst minimising costs?

Local supply business models can offer significant benefits to the electricity system, but also generate economic, social, and environmental values that are not well accounted for in current policy or regulation (Hall and Roelich, 2016). The energy sector will meanwhile have to adapt its business models in order to capture new markets and accelerate low carbon transitions. Research shows that new business models are technologically feasible, but there is still a need for system integration, as well as comprehensive demonstration trials which can combine and test information and communications technology (ICT) solutions (Mazur et al., 2019).

Prosumers (who both produce and consume renewable energy) are meanwhile key actors in energy transitions. Traditional prosumer business models are increasingly unviable without subsidies, and so new business models should play an increasing role in a post subsidy environment, for example through microgrids, local energy companies, P2P, aggregators, ESCOs and V2G models (Brown et al., 2019).

References

Question 30 (Power): In Chapter 2 of the Net Zero Technical Report we presented an illustrative power scenario for 2050 (see pages 40-41 in particular):

a) Which low-carbon technologies could play a greater/lesser role in the 2050 generation mix? What about in a generation mix in 2030/35?

b) Power from weather-dependent renewables is highly variable on both daily and seasonal scales. Modelling by Imperial College which informed the illustrative 2050 scenario suggested an important role for interconnection, battery storage and flexible demand in a future low-carbon power system:

i. What other technologies could play a role here?

ii. What evidence do you have for how much demand side flexibility might be realised?

i. The UK would still need large scale biomass power by 2030/35, with a transition to biomass-CCS (BECCS) and renewables with energy storage by 2050. Some nuclear power may also still be needed.

Question 31 (Hydrogen): The Committee has recommended the Government support the delivery of at least one large-scale low-carbon hydrogen production facility in the 2020s. Beyond this initial facility, what mechanisms can be used to efficiently incentivise the production and use of low-carbon hydrogen? What are the most likely early applications for hydrogen?

ANSWER:

Question 32 (Aviation and Shipping): In September 2019 the Committee published advice to Government on international aviation and shipping and Net Zero. The Committee recognises that the primary policy approach for reducing emissions in these sectors should be set at the international level (e.g. through the International Civil Aviation Organisation and International Maritime Organisation). However, there is still a role for supplementary domestic policies to complement the international approach, provided these do not lead to concerns about competitiveness or carbon leakage. What are the domestic measures the UK could take to reduce aviation and shipping emissions over the period to 2030/35 and longer-term to 2050, which would not create significant competitiveness or carbon leakage risks? How much could these reduce emissions?

The Committee’s letter to Government states that “up to a 49% increase in demand” is projected for aviation. The conservative estimate of Finney and Mattioli (2019) suggests airports are aiming for growth in UK airport capacity of 59% at least. Since increasing supply can drive down prices and generate demand, this is very worrying indeed, especially as the Committee’s plans themselves rest on an assumption of a 25% increase in demand.

Finney and Mattioli (2019) show that, with projects already underway and projects approved, capacity for a 25% increase in passenger numbers would likely already be surpassed. Since the article was written, Bristol has also been given approval for expansion. This is a rapidly changing picture and it is imperative that the Committee make clear that a national strategy is required so that capacity is not increased by more than reasonable increases in demand in line with the Net Zero target. This should be done fairly, so that poorer regions of the country are not disadvantaged.
Question 32 (Aviation and Shipping): In September 2019 the Committee published advice to Government on international aviation and shipping and Net Zero. The Committee recognises that the primary policy approach for reducing emissions in these sectors should be set at the international level (e.g. through the International Civil Aviation Organisation and International Maritime Organisation). However, there is still a role for supplementary domestic policies to complement the international approach, provided these do not lead to concerns about competitiveness or carbon leakage. What are the domestic measures the UK could take to reduce aviation and shipping emissions over the period to 2030/35 and longer-term to 2050, which would not create significant competitiveness or carbon leakage risks? How much could these reduce emissions?

Finney and Mattioli (2019) also estimate that, if demand follows the current plans for increased airport capacity, an extra 8 MtCO$_2$e of speculative emissions reductions will be needed, at the same time as ruling out the speculative option of maintaining aviation demand at current levels. This means that airport expansion is likely one of the key infrastructure decisions being taken now that will significant damage the chances of achieving Net Zero.

The Committee is not making this explicit enough in its communications. This is not even about finding demand-side options to help reduce emissions further, it is about the vital need for demand-side options to avoid ruining the chance of achieving the Net Zero target.

With regard to leakage, the majority of flights are made by UK citizens going on holiday (ONS, 2018). These are not essential flights, and in most cases it will not make sense for people to leave the country by car, boat or train solely to take the flight from elsewhere. There is much scope for demand-side options such as a frequent flyer levy without resulting in carbon leakage.

References

Question 33 (Agriculture and Land use): In Chapter 7 of the Net Zero Technical Report we presented our Further Ambition scenario for agriculture and land use (see page 199). The scenario requires measures to release land currently used for food production for other uses, whilst maintaining current per-capita food production. This is achieved through:

- A 20% reduction in consumption of red meat and dairy
- A 20% reduction in food waste by 2025
- Moving 10% of horticulture indoors
- An increase in agriculture productivity:
 - Crop yields rising from the current average of 8 tonnes/hectare for wheat (and equivalent rates for other crops) to 10 tonnes/hectare
 - Livestock stocking density increasing from just over 1 livestock unit (LU)/hectare to 1.5 LU/hectare

Can this increase in productivity be delivered in a sustainable manner?

Do you agree that these are the right measures and with the broad level of ambition indicated? Are there additional measures you would suggest?

Answer:

Question 34 (Agriculture and Land use): Land spared through the measures set out in question 33 is used in our Further Ambition scenario for: afforestation (30,000 hectares/year), bioenergy crops (23,000 hectares/year), agro-forestry and hedgerows (~10% of agricultural land) and peatland restoration (50% of upland peat, 25% lowland peat). We also assume the take-up of low-carbon farming practices for soils and livestock. Do you agree that these are the key measures and with the broad level of ambition of each? Are there additional measures you would suggest?

Agricultural management of lowland peatlands is a key contributor to UK land-use related carbon release each year (DEFRA report SP1210). A key hotspot for such release is East Anglia. Most UK lowland peatland has been destroyed or is highly degraded, and to suggest that 25% lowland peat should be restored will not sufficiently address the large annual carbon releases from the other 75% of lowland peatlands, which are predominant sources. Wholesale change is therefore needed in the management of lowland peatlands as a UK priority.

UK upland peatlands meanwhile provide a huge potential for net carbon gain if appropriately managed. The 50% target here is good, but we could proactively harness almost all of our upland peatlands for further storage and sequestration, while at the same time reducing flood risk (e.g. Gao et al. 2016), enhancing water quality (particularly important as the UK is unique in a global context in the very high proportion of drinking water sourced from peatlands (Xu et al., 2018), biodiversity (e.g. Ramchunder et al., 2012), and public access to tackle health and wellbeing.

Acceleration of peatland restoration and carbon sequestration in upland peatlands should be a UK priority. Further research is required to study how to maximise carbon storage across these landscapes through nuanced types of intervention (rather than relying solely on traditional restoration methods) and to mitigate the effects of future climate change which will degrade these systems further unless we intervene more radically now (Li et al., 2015, 2017; Xu et al., 2020).
Question 34 (Agriculture and Land use): Land spared through the measures set out in question 33 is used in our Further Ambition scenario for: afforestation (30,000 hectares/year), bioenergy crops (23,000 hectares/year), agro-forestry and hedgerows (~10% of agricultural land) and peatland restoration (50% of upland peat, 25% lowland peat). We also assume the take-up of low-carbon farming practices for soils and livestock. Do you agree that these are the key measures and with the broad level of ambition of each? Are there additional measures you would suggest?

References

Xu et al. (2018) Hotspots of peatland-derived potable water use identified by global analysis, Nature Sustainability doi:10.1038/s41893-018-0064-6

Xu et al. (2020) Increased dissolved organic carbon concentrations in peat-fed UK water supplies under future climate and sulfate deposition scenarios, Water Resources research doi:10.1029/2019WR025592

Question 35 (Greenhouse gas removals): What relevant evidence exists regarding constraints on the rate at which the deployment of engineered GHG removals in the UK (such as bioenergy with carbon capture and storage or direct air capture) could scale-up by 2035?

Biomass-based power generation combined with CO₂ capture and storage (Biopower CCS) currently represents one of the few practical and economic means of removing large quantities of CO₂ from the atmosphere, and the only approach that involves the generation of electricity at the same time.

The Techno-Economic Study of Biomass to Power with CO₂ capture (TESBiC) (Bhave et al., 2017) identified and assessed twenty-eight Biopower CCS technology combinations involving combustion or gasification of biomass (either dedicated or co-fired with coal) together with pre-, oxy- or post-combustion CO₂ capture from the perspective of being able to deploy Biopower CCS by 2050 (rather than 2035).

In addition to the capital and operating costs, techno-economic characteristics such as electrical efficiencies (LHV% basis), Levelised Cost of Electricity (LCOE), costs of CO₂ captured and CO₂ avoided were modelled over time assuming technology improvements from today to 2050.

Many of the Biopower CCS technologies gave relatively similar techno-economic results when analysed at the same scale, with the plant scale (MWe) observed to be the principal
Question 35 (Greenhouse gas removals): What relevant evidence exists regarding constraints on the rate at which the deployment of engineered GHG removals in the UK (such as bioenergy with carbon capture and storage or direct air capture) could scale-up by 2035?

Driver of CAPEX (£/MWe) and the cofiring % (i.e. the weighted feedstock cost) a key driver of LCOE. However, the TESBiC project also highlighted the lack of financial incentives for generation of electricity with negative CO₂ emissions: current policies either only penalise positive emissions, or incentivise zero emissions, and the data collected indicates that the most significant barriers to the deployment of Biopower CCS technologies will be economic and regulatory in nature, rather than technical, assuming fossil CCS technologies are successfully proven at scale.

Furthermore, establishing sustainable biomass supply chains with low upstream emissions and availability and suitability of CO₂ sequestration sites are important issues that would need to be considered for the development and deployment of Biopower CCS. More detailed engineering studies are recommended to help reduce the uncertainties in the cost estimates, followed by pilot and demonstration activities.

References

Question 36 (Greenhouse gas removals): Is there evidence regarding near-term expected learning curves for the cost of engineered GHG removal through technologies such as bioenergy with carbon capture and storage or direct air capture of CO₂?

BECCS is one of the most promising NETs suggested by many and involves utilising biomass to produce energy. However, due to the lack of BECCS installations internationally, learning curve analysis has not been conducted on BECCS. Nonetheless, learning curve analysis has been conducted on the components (bioenergy and carbon capture and storage) separately. This shows that the cost reduction of the technology is dependent upon several factors including: investment, location, technology chosen, and the capacity installed, and that cost reductions are highly likely where there is a significant amount of learning from the technology (e.g. Junginger *et al*., 2006; Wu *et al*. 2016; Van den Broek *et al*., 2009; Riahi *et al*., 2004).

Conversely, although there is very little literature available, based on existing learning rates, without substantial investment and development in the early stages of BECCS, the costs would soon become increasingly expensive.

References

Wu *et al*. (2016) Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2 x 600 MW retrofitted oxyfuel power plant as a case study, Renewable & Sustainable Energy Reviews

Question 36 (Greenhouse gas removals): Is there evidence regarding near-term expected learning curves for the cost of engineered GHG removal through technologies such as bioenergy with carbon capture and storage or direct air capture of CO\(_2\)?

Question 37 (Infrastructure): What will be the key factors that will determine whether decarbonisation of heat in a particular area will require investment in the electricity distribution network, the gas distribution network or a heat network?

ANSWER:

Question 38 (Infrastructure): What scale of carbon capture and storage development is needed and what does that mean for development of CO\(_2\) transport and storage infrastructure over the period to 2030?

IIASA has conducted climate modelling on several negative emissions technologies. The results, published on their public database, is a conglomeration of integrated assessment modelling (IAM) and impact, adaptation and vulnerability (IAV) analysis (Riahi et al, 2007).

This investigates how BECCS should contribute to the future energy mix, finding that BECCS is a key technology and favorable for achieving negative emissions because of its ability to produce energy vectors (van Vuuren et al., 2013).

Recent research has also quantified the prospects and costs of the ten most important applications of atmospheric CO\(_2\), which include chemical production, building materials, fuels, and fertilizer in algae farming, up to 2050. In the long term, each option would make it possible to bind at least half a gigatonne of atmospheric CO\(_2\) per year (Hepburn et al. (2019). Although the potential uses of atmospheric CO\(_2\) still need to be systematically analysed, CO\(_2\) utilisation could play an important role on the path to Net Zero, for example by accelerating the development and reducing costs of removal technologies through new business models and niche markets. Mitigation through reducing emissions should nonetheless remain the priority.

References
