What is the impact of climate change and geoengineering on PV electricity output? UNIVERSITY OF LEEDS

Rolf Crook Piers Forster* Julia Crook*° Chris Smith(*)° Lawrence Jackson*° Scott Osprey⁺ Laura Jones

° they did most of the work

Low Carbon Energy RG SCAPE Faculty of Engineering University of Leeds

*ICAS / Preistley Centre SEE Faculty of Environment University of Leeds

+Department of Physics University of Oxford

Solar technology Temperature and irradiance

$$P_{\rm pv} = A_{\rm pv} G_{\rm tot} \eta_{\rm cell}$$

$$\frac{\eta_{\text{cell}}}{\eta_{\text{ref}}} = \left[1 - \beta (T_{\text{cell}} - T_{\text{ref}})\right] \left(1 + \frac{k_{\text{B}} T_{\text{cell}}}{e} \frac{\ln X}{V_{\text{oc}}}\right)$$

For crystalline silicon, $\beta = 0.0045 \text{ K}^{-1}$

Assuming a horizontal panel

Climate change Temperature

10-year mean centred on 2080. Baseline: 1980 to 1999 mean.

Climate change Direct insolation

10-year mean centred on 2080. Baseline: 1980 to 1999 mean.

Impact Temperature and insolation

10-year mean centred on 2080. Baseline: 1980 to 1999 mean.

J Crook et al., Energy Environ. Sci., 2011, 4, 3101

Solar technology Spectral irradiance

Solar technology Spectral irradiance

10 mm water vapour

CJ Smith, R Crook, P Forster, EU PVSEC, 2102 (2015).

Climate change Water vapour

10-year mean centred on 2090. Baseline: 1985 to 2005 mean.

Impact Water vapour

Solar technology Direct and diffuse irradiance

Solar technology Direct and diffuse irradiance

Flat panel technologies

Climate change Stratospheric aerosols

Some direct irradiance becomes diffuse

Climate change Stratospheric SO₂ injection

CJ Smith et al., submitted for publication.

Impact Stratospheric SO₂ injection

Fixed-angle flat-panel PV

Concentrating solar power (CSP)

CJ Smith et al., submitted for publication.

15.0

Impact Summary

Climate change temperature ______ irradiance _____

water vapour

Stratospheric SO₂ injection flat-panel PV CSP -5% to +3% (PV) -5% to +10% (CSP)

-3% to -1% (Si-PV)

-4% to +1% -15% to +4%

% change in PV output

Best fit linear curve Baseline: 1980 to 1999 mean

% change in output (CPV)

10-year mean centred on 2080. Baseline: 1980 to 1999 mean.

0.98 0.62 0.56 0.45 0.38 0.01 G -0.98 -0.69 G 1.98 1.69 California Algeria Nevada (-2.7%) (-4.0%)(-1.5%)Spain UK (+2.4%)(+1.2%)0.70 0.30 -0.48 -0.49 -0.18 1.48 1.50 1.15 Germany China Saudi Arabia Australia (+3.2%)(+3%)(-5.5%)(-1.1%)

Fractional contributions (PV)

Fractional contributions (CPV)

Uncertainty

Change in cloud amount: Good agreement in Europe, Saudi Arabia, and Australia. Poor agreement in America.